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ABSTRACT  

Objective: Population health prediction requires 

learning from large, sensitive datasets scattered across 

hospitals, registries, and devices. This article proposes 

and details a hybrid privacy-preserving approach that 

marries Federated Learning (FL) with Homomorphic 

Encryption (HE) to enable multi-institutional 

modeling without exposing raw data or individual 

updates. 

Methods: We synthesize advances in FL (e.g., 

FedAvg and secure aggregation), approximate-

arithmetic HE (e.g., CKKS), and complementary 

safeguards (differential privacy, auditing) into a 

layered architecture for population-scale risk 

prediction (e.g., readmission, sepsis, multimorbidity, 

influenza/COVID-19 surges). We define trust and 

threat models, communication/computation pipelines, 

parameter choices, and evaluation protocols spanning 

utility, privacy, and systems performance. 

Results: The proposed framework achieves end-to-

end protection of data and model updates via secure 

aggregation and partially/fully homomorphic 

encryption for selected operations, while supporting 

realistic medical workflows. We outline algorithms for 

HE-friendly training and encrypted inference, discuss 

security against inference and poisoning attacks, and 

present a reproducible benchmarking plan. 

Conclusions: Hybrid HE–FL can deliver clinically 

useful, generalizable population health models while 

reducing regulatory risk and cross-border data 

movement. We identify implementation patterns, 

performance trade-offs, and governance processes that 

convert cryptographic guarantees into deployable 

healthcare systems. 

Keywords: Federated learning, homomorphic 

encryption, secure aggregation, differential privacy, 

population health, privacy-preserving machine 

learning. 

 

INTRODUCTION 

Predictive analytics for population health are 

dependent on big, private datasets from many 

custodians. They must be learned from across 

hospitals, registries, public health agencies, payers, 

community clinics, and even patient-collected data 

(wearables, sensors, apps). Traditional centralized 

models risk violating privacy laws, institutional risk 

appetites, and cross-border transfer regulations. FL 

systems can mitigate many of these concerns by 

learning a global model from local updates computed 

on private data at the source, communicating only the 

updates (gradients, model deltas) to a trusted central 

server, and discarding raw data (McMahan et al., 

2017). Healthcare-specific evidence shows FL can 

achieve clinically meaningful performance while 

preserving data locality in hospitals (Dogra et al., 

2021; Kshitij et al., 2021). Large FL studies 

(COSMOS, FabFL, SingFL, FLOW-HF) have had 

tangible impact in specialized use cases. For example, 

the EXAM study was an emergency medicine FL 

collaboration that was able to coordinate international 

sites (academic medical centers, government 

hospitals) to predict oxygen requirements using vital 

signs and lab values during the COVID-19 pandemic, 

reporting generalizable performance across the 

participating health systems. It is an existence proof of 

at-scale medical FL. Yet FL alone is not a panacea: 

model updates are known to leak information under 

membership or property inference attacks, and 

aggregators may be “honest-but-curious.” HE can 

help, by encrypting updates or even supporting 

computation on ciphertexts: for secure HE–FL, clients 

encrypt their updates to the server; the server can then 

aggregate these and even perform limited types of 

operations on them (such as scaling) without seeing 

the plaintext. Cryptonets was an early demonstration 

of neural network inference over encrypted data, and 

CKKS was an approximate arithmetic HE scheme 

later published in 2016 that has enabled secure 
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(encrypted) inferences. 

In this article, we propose a new hybrid HE–FL 

framework specialized to population health prediction. 

We integrate known results and advances in FL 

(FedAvg, secure aggregation) and HE (CKKS 

approximate-arithmetic HE), along with additional 

useful safeguards (differential privacy, auditing) to 

build a layered architecture for end-to-end population 

health prediction (readmission, sepsis, multimorbidity, 

influenza/COVID-19 surge prediction) while 

supporting realistic deployment on real medical 

workflows. We discuss trust and threat models, set up 

the communication and computation pipeline, make 

recommendations on cryptographic parameters, and 

provide an evaluation blueprint for use by the 

community spanning utility, privacy, and systems 

performance. We instantiate this in a complete design 

and protocol description, and finally in a use-case-

driven study plan (Section 9). Our key properties are: 

(i) end-to-end privacy of data and updates via secure 

aggregation and (partially/fully) homomorphic 

encryption for some operations while supporting 

workflows that are realistic in medical contexts; (ii) 

algorithms and protocols for training (HE-friendly) 

models and encrypted inference (necessary for using 

encrypted models from third parties without 

compromising their privacy); and (iii) guidance on 

security properties against inference and poisoning 

attacks. 

 

BACKGROUND AND RELATED WORK 

Federated Learning in Healthcare 

FL trains shared global models in rounds, by 

averaging local gradients or model updates at clients 

(e.g., FedAvg), reducing the need to centralize data 

and improving performance under non-IID data 

distributions across hospitals or regions. Medical case 

studies have demonstrated feasibility for imaging, 

EHR-based prediction and prediction during the 

pandemic, but also revealed heterogeneity and 

governance challenges (Zhang et al., 2019; Yang et 

al., 2021; Tang et al., 2021). Secure aggregation. 

Updates sent from clients can be masked (Bonawitz et 

al., 2017; Singh et al., 2020) to prevent the server from 

learning them, even if some clients fail to send their 

data; the canonical approach combines pairwise masks 

with cryptographic tricks to enable robustness and 

performance at scale. Newer work (Singh et al., 2020) 

introduces variations on the masking primitives that 

use multiparty homomorphic encryption for 

aggregation. Differential privacy (DP). DP defenses 

limit information leakage of any one participant by 

adding calibrated noise, and FL-specific methods 

target user-level DP guarantees under 

sampling/participation (Srikumar et al., 2018; Zhang 

et al., 2020; Liew et al., 2021). Latest DP analysis 

methods target Rényi DP accounting with moments 

accountant or subsampling. 

 

Homomorphic Encryption for Machine Learning 

HE is a class of cryptographic schemes that support 

arithmetic operations on ciphertexts, enabling the 

outsourcing of computation and/or storage to untrusted 

environments. CryptoNets showed the feasibility of 

neural network inference over encrypted data using a 

homomorphic encryption scheme with polynomial 

activations (Gomez et al., 2017; Ezeogu et al., 2025). 

CKKS, on the other hand, introduced efficient 

approximate arithmetic for HE (sum, product, rescale) 

over vectors, which is a good fit for many ML 

primitives (dot products, convolutions, linear layers) 

(Cheon et al., 2016). The 

HomomorphicEncryption.org community publishes 

evolving interoperable standards (schemes, 

parameters, security levels) along with guidance on 

libraries for cryptographic parameters, portability, and 

interop; there are now usable implementations that are 

commonly adopted across academia and industry. 

Ongoing research continues to reduce latency via 

packing (SIMD), bootstrapping improvements, and 

HE-friendly network design. 

 

Why Hybridize? 

FL minimizes data movement but does still reveal the 

update vectors to the central service (or at least, their 

average); honest-but-curious adversaries are well 

motivated in healthcare applications. HE (in this case 

CKKS) encrypts updates or inference queries, closing 

important gaps: with HE, clients encrypt their updates, 

the server can aggregate them (under a commutative 

but non-deterministic cipher), and even apply some 

limited computation (CKKS supports addition and 

scalar multiplication, and public-key HE schemes 

allow multiplication) without seeing the plaintext. It 

can also enable secure, outsourced inference 

workloads. Combined with secure aggregation, 

optionally DP, and additional cryptographic and 

statistical protections, HE–FL can support end-to-end 



 

 

 
INTERNATIONAL JOURNAL OF AGEING, 

SAFETY, HEALTHCARE & SCIENCE 

INNOVATION (IJASHSI) 

Vol. 03, Issue 1, September 2025, pp: 177 – 185 

 
 

 
179  

protection. To summarize, prior surveys have also 

emphasized resource constraints and the need for 

efficiency in FL deployments, an important driver of 

hybrid designs that selectively apply HE to a small 

number of highly sensitive operations. 

 

PROBLEM STATEMENT AND USE CASES 

Prediction Tasks 

Predictive analytics in population health are an 

attractive use case for HE–FL because they are 

deployed for high-value targets (reduce mortality or 

cost) and target datasets that are widely distributed 

across care settings (community, hospital, registries, 

health plans). Representative tasks include: 

• Readmission risk within 30 days for common 

chronic conditions. 

• Sepsis/ICU transfer risk prediction from vitals and 

labs. 

• Multimorbidity progression or polypharmacy 

adverse events. 

• Respiratory deterioration during outbreaks (oxygen 

requirement within 24–72 h). 

• Utilization forecasting (ED load, bed occupancy) 

possibly stratified by demographics and comorbidities. 

Such tasks require joining EHR features, claims, 

registries, and sometimes (wearable or patient-

reported) device data across sites that cannot share raw 

records, under clinical or regulatory constraints. The 

aim is to learn a global model that generalizes across 

systems and demographics, satisfying privacy, 

security, and regulatory needs. 

 

Constraints 

• Privacy & compliance. HIPAA/GDPR-like 

regulations, local ethics and IRB approvals, DSAR 

and other data sharing agreements, cross-border use 

limitations, etc. 

• Heterogeneity. EHR schema, coding schemes and 

conventions, outcome measurement, population mix, 

and feature availability are non-IID in hospitals and 

regions. 

• Systems limits. Hospital IT variability, patch levels, 

intermittent connectivity, compute/storage limits, and 

strict change-control processes and timelines. 

• Adversarial risks. Membership and property 

inference on model updates, gradient inversion, 

poisoning/Sybil clients, curious aggregator. 

 

THREAT AND TRUST MODELS 

The coordinator (server) is honest-but-curious: it 

follows the protocol but tries to learn from its view of 

messages; some clients may be active adversaries 

(poisoning, model inversion) and external 

eavesdroppers may intercept messages. Our design 

goals are: 

• Confidentiality of raw data and local model updates 

(against server and clients). 

• Integrity of global model (robustness to poisoned or 

otherwise anomalous updates). 

• Availability and client drop-out tolerance (clients can 

connect/reconnect asynchronously). 

We consider leakage through sharing of parameter 

trajectories (despite secure aggregation) and possible 

side channels. The framework layers cryptographic, 

statistical, and robust-learning defenses. 

 

THE HYBRID HE–FL ARCHITECTURE 

High-Level Layers  

1. Data layer (on-prem). Each site maintains local 

feature engineering pipelines with internal 

governance; no raw data leaves the site, even in 

intermediate representations. Note: this includes 

training/test/validation splits and label definitions! 

2. Client FL engine. Trains model for E epochs on 

local data, produces gradient/weight deltas. Applies 

clipping locally for DP, and additional robustness 

filters (update norm checks, etc. ). 

3. Protection layer: 

a) Secure aggregation masks client updates so the 

server sees only sum (masked sums for fault tolerance 

in case some clients drop out). 

b) Homomorphic encryption encrypts updates 

(alternatively, can pre-aggregate local contributions) 

and sends Enc(Δ) to server; aggregator can perform 

simple operations over ciphertexts (CKKS) without 

access to plaintext. 

c) Optional user-level differential privacy: calibrated 

noise is added locally for DP, plus secure accounting 

to track and publish privacy budget. 

4. Coordinator (server). Orchestrates FL rounds, 

applies (encrypted) aggregation and model update, 

enforces various participation rules, rate-limits, and 

anomaly detection. 

5. Inference paths: 

o Standard inference: the plaintext model is 

downloaded and run on local data. 

o Encrypted inference (optional): the model is used 

from a third party or federated across boundaries; for 
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each query, a client or an external requester sends 

encrypted feature vector; the coordinator returns 

encrypted predictions (CryptoNets-style). 

6. Audit/Governance: Immutable logging of schema, 

hyperparameters, DP budget, cryptographic 

parameters, training approvals, metadata. 

 

Protocol Flow (Per Round) 

1. Initialization: Coordinator initializes model 

parameters and HE public key (CKKS) and sends to 

all clients. As a security parameter, minimum security 

level is 128-bit (classical) as per HE community 

recommendations. 

2. Client update: Each client locally computes its 

gradient using its minibatches for E epochs; clips 

update to L2-norm bound and optionally adds DP 

noise; serializes (pickles). 

3. Protection: Clients either (option A, default): a. 

Secure aggregation masks updates (Bonawitz et al.) 

before sending them; the server recovers only the sum; 

or (option B, sensitive rounds or small cohorts): b. 

Homomorphically encrypt their updates using CKKS 

(if HE is applied selectively) and send ciphertexts 

Enc(Δ). The server sums ciphertexts Enc(Δ) using HE 

addition and performs scalar division via rescaling to 

obtain average gradient; no decryption occurs server-

side. 

4. Aggregation and update: Server aggregates and 

applies FedAvg or more robust aggregators (median, 

trimmed mean, Krum) on ciphertexts where possible; 

otherwise on masked sums after unmasking. Resultant 

update is signed and broadcast. 

5. Model distribution: Clients download new global 

weights and reinitialize their local models to the new 

global state. 

 

Selective HE. HE is significantly more costly 

(computation and bandwidth); we only apply it to (i) 

final layer updates, most at risk from inversion; (ii) 

sparse or high-leakage features; or (iii) training rounds 

that include sensitive cohorts. Remaining layers use 

secure aggregation + DP. With a configuration API, 

model developers can decide which layers use HE. 

 

Key Algorithms 

Federated Averaging (FedAvg). Weighted averaging 

of client parameters by sample count. 

HE packing. CKKS scheme allows packing multiple 

values into a single ciphertext; we pack gradient 

chunks from each client into slots and use batched 

add/mul instructions to amortize ciphertext size. 

Rescaling controls noise growth. 

Secure aggregation. Bonawitz-style pairwise masks 

that cancel out in the sum despite client dropout; 

alternative constructions use seeded PRGs to reduce 

communication cost (SASH). 

DP accounting. Rely on Rényi DP with moments 

accountant or subsampling to track per-round privacy 

loss under client sampling; publish (ε, δ) budget at end 

of training. 

 

IMPLEMENTATION CONSIDERATIONS 

Cryptographic Parameters 

• HE scheme. CKKS for encryption (approximate 

arithmetic) at training time and inference. BFV/BGV 

can be used for exact integer operations on smaller 

networks (bit-packed model weights and activations). 

• Security level. At least 128-bit classical security as 

per community standards/guidance. Relatedly, choose 

polynomial modulus degree (8192–16384) and 

coefficient modulus chain (size of each slot) to 

balance noise budget vs. performance. 

• Keying. Global public key (encryption only) is 

published and sent to clients; client-side joint key 

generation allows multiparty decryption (threshold 

decryption) of server-aggregated ciphertexts without 

giving the server decryption capability. 

 

Systems Stack 

• FL orchestration. TensorFlow Federated, Flower, or 

custom gRPC services for Federated 

Averaging/FedProx algorithms. 

• HE libraries: OpenFHE/HElib/SEAL libraries that 

support CKKS operations; can be integrated via 

C++/Python bindings. 

• Secure aggregation: Bonawitz protocol with dropout 

resilience. More efficient primitives (SHA3, ChaCha) 

and constant-time masking primitives are desirable. 

Authenticated channels should be used (TLS, out-of-

band MACs). 

• Telemetry & audit: Append-only, immutable logs of 

round metadata, DP budgets, and key lifecycle events. 

 

Data Engineering 

• Schema alignment. Map site-specific EHR fields to a 

shared feature contract, e.g., demographics, 

comorbidities, labs, meds, vitals, encounters. 

• Quality control. Local validation (missingness, 
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outliers), harmonized code sets (ICD-10, RxNorm, 

ATC), timestamp normalization, and potential label 

leakage checks. 

• Fairness attributes. Sensitive attributes should be 

tracked when lawful (age bands, sex, ethnicity 

proxies) for evaluation of subgroup performance and 

bias. 

 

SECURITY AND PRIVACY ANALYSIS 

Against the server. Under the security model, secure 

aggregation ensures only aggregate updates are 

revealed; end-to-end HE prevents server from learning 

even aggregate plaintext in sensitive training rounds. 

Against other clients. Updates never go peer-to-peer; 

the sharing of update vectors is mitigated by 

masks/HE protection. DP bounds worst-case leakage 

about any individual’s data, even if the final model is 

probed by an adversary. 

Gradient/feature inversion. By itself, is a challenge FL 

deployments face. Our defense is to HE-protect the 

highest-risk layers; update clipping + DP reduces 

overall inversion success. Robust aggregation 

additionally limits anomalous gradients that encode 

sensitive patterns. 

Poisoning/Sybil attacks. Add client attestation and rate 

limiting, robust aggregators (median/trimmed-mean, 

Krum), cross-round consistency checks for easier 

detection, and audit trails for forensic review and 

forensics. 

HE-specific concerns. HE parameters are chosen 

conservatively. Follow the HE community’s 

recommended parameter sets and security proofs 

(attacks). Side-channel protections (constant-time 

crypto ops, hardened build flags) are mandatory. 

 

Performance Engineering 

HE has significant computational and bandwidth 

overhead (encryption, ciphertext arithmetic, rescaling, 

ciphertext size). Practical strategies to optimize these 

are: 

• Partial HE: Encrypt only the most sensitive layers or 

statistics (last two layers, or sparse/high-leakage 

features); rely on secure aggregation (option A) for the 

rest of the model. 

• Batching: Pack vectors into CKKS slots to amortize 

computation; minimize rotations (expensive in HE). 

• Client sampling & asynchronous FL: Sample a 

subset of clients per round; clients can connect/ 

disconnect (servers never reveal all gradients). 

FedAvg is already more communication-efficient than 

synchronous SGD, further reducing needed rounds. 

• Communication-efficient triggers: Dynamic 

(partially unsynchronized) FL with adaptive 

synchronization policies could further reduce round 

frequency when local models don’t change much. 

• Model design: Choose HE-friendly architectures and 

primitives (polynomial activations for encrypted 

inference paths, limit depth when HE is applied fully 

end-to-end) with small-enough output vectors to pack 

efficiently. For CKKS, low-degree polynomials for 

activation reduce noise growth. 

FL deployments in healthcare have demonstrated 

acceptable latency-accuracy tradeoffs at scale; our 

hybrid design will retain this if HE is applied to a 

small number of layers and selectively. 

 

METHODOLOGY BLUEPRINT FOR A 

POPULATION-HEALTH STUDY 

We provide an instantiation of an evaluation plan for a 

multi-site FL study in population health (hypothetical 

or real) that readers can adopt and run. The steps from 

section 9 are all shown in table 1. 

Objectives 

Develop and evaluate a secure, generalizable model 

for (a) 30-day readmission and (b) respiratory 

deterioration among hospitalized adults using multi-

institution FL with hybrid HE protection. 

Cohorts and Sites 

• Sites: 10–20 hospitals across different regions; each 

site retains data locally. 

• Population: Adult inpatients; exclude hospice, 

obstetric admissions. 

• Outcomes: 30-day readmission; need for high-flow 

oxygen or mechanical ventilation within 72 h of 

admission. 

Features and Preprocessing 

• Demographics, comorbidity indices, vitals time 

series summaries, key labs, medication classes, 

procedures, recent utilization. 

• Harmonization to a shared schema; per-site 

normalization of continuous fields (standardization). 

• Local train/validation splits; labels defined 

identically across sites. 

Model Families 

• Tabular: Gradient-boosted trees or feed-forward 

networks. 

• Sequential: Lightweight GRU/1D-CNN for temporal 

vitals (if available). 
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• Calibration: Platt scaling/isotonic—should be 

performed locally with held-out data. 

Training Protocol 

• Optimizer: Local Adam/SGD; 1–5 local epochs per 

round. 

• Aggregation: FedAvg with sample-count weighting; 

robust variant (trimmed mean) as a defense against 

poisoning. 

• Protection: 

o Secure aggregation in all rounds. 

o CKKS encryption for last-layer updates every K 

rounds (e.g., K = 3) and for small-cohort sites; 

multiparty decryption only at clients. 

o Optional user-level DP noise (Gaussian mechanism; 

track with RDP accountant). 

Evaluation 

• Utility: AUROC, AUPRC, Brier score, calibration 

error, decision-curve analysis; site-wise performance, 

leave-one-site-out validation. 

• Fairness: Subgroup performance deltas; equalized 

odds, PPV by subgroup. 

• Privacy/Security: Membership-inference empirical 

tests; gradient inversion attempts on ablated 

configurations; DP (ε, δ) budget disclosure. 

• Systems: Round latency, client dropout, bandwidth 

per round, CPU/GPU cycles, HE 

encryption/aggregation time. 

Baselines 

• Centralized training on a pooled synthetic dataset 

with the same schema. 

• FL without HE/DP (but with secure aggregation 

only). 

• FL + DP only (no HE). 

• HE-only encrypted inference with a non-federated 

model (for performance comparison). 

 

Encrypted Inference for Cross-Boundary Queries 

Beyond training, HE provides a mechanism for secure 

outsourced inference. A public health agency or other 

external entity with high-risk populations can query a 

hospital-hosted FL model and receive encrypted risk 

scores back. By encrypting the population-level 

feature aggregates for input populations, the receiving 

end of the query cannot see the local population 

profile or other protected features. CryptoNets-style 

secure inference pipelines for HE replace non-

polynomial activations with polynomial 

approximations or square activations and perform the 

entire forward pass while keeping it encrypted 

(securely outsourced, parallelized); with CKKS, 

approximate arithmetic maintains acceptable tabular 

prediction accuracy for many shallow models. 

 

Governance, Compliance, and Operationalization 

• Data-Use Agreements (DUAs): Clear language that 

raw data never leaves participating sites, specification 

of cryptographic parameters, DP budget, and audit 

rights. 

• IRB/Ethics: Minimization principles and technical 

controls emphasized; we would publish transparency 

reports on privacy budgets and performance. 

• Key Management: Clients hold decryption keys and 

threshold encryption keys (allowing multiparty 

decryption but denying server decryption); server 

holds only public keys and cannot decrypt aggregates 

or queries. Key rotation policies will need to be 

defined. 

• Model Release and Liability: Sign and version global 

models with hashes; local validation before clinical 

use (version numbers, timestamps, changes, and 

decisions should all be tracked in the immutable log); 

begin with decision-support roles subject to clinical 

governance processes. 

• Monitoring: Ongoing drift detection and bias audits, 

incident response playbooks for suspected poisoning 

or leakage. 

 

Limitations and Future Work 

• Compute and latency overheads. HE always incurs 

compute and latency overheads (larger ciphertexts); 

even with our selective encryption design it adds cost. 

Future work: faster bootstrapping, packing strategies, 

hardware acceleration arXiv. 

• Robustness vs. privacy trade-offs. DP noise and 

robust aggregation can limit accuracy; hyperparameter 

search and personalization (site-level fine-tuning) can 

mitigate this. 

• Extreme non-IID. Heterogeneity may be so high that 

a single global model is infeasible; hybrid HE–FL 

with personalized FL (meta-learning, clustered 

models, model distillation) may help. 

• Standardization gaps. HE has community-endorsed 

standard guidance, but end-to-end standards for HE–

FL healthcare pipelines (including auditing/reporting) 

are nascent. Future work: better governance, 

compliance controls, possibly including privacy 

budget accounting. 

Future work should include novel combinations of 
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hybrid HE–FL systems with secure enclaves (TEE) for 

orchestration or server-side fraud detection logic, 

privacy-preserving federated synthetic data generation 

for data expansion, and improved poisoning defenses 

that can still work with encrypted updates. 

 

CONCLUSION 

Distributed, heterogeneous data sources improve 

population health prediction, but legal, privacy, and 

trust issues limit its centralization. Combining 

Federated Learning with Homomorphic Encryption 

using secure aggregation and differential privacy can 

help provide privacy-preserving multi-institutional 

modeling. FL has been deployed in healthcare 

applications, demonstrating that decentralization does 

not prevent the training of strong and generalizable 

models. HE can be used to address any leakage path 

left in FL and is also well-suited for encrypted 

inference in cross-institutional settings. Achieving 

population-level prediction in a privacy-preserving, 

efficient, and equitable manner will require carefully 

designed and optimized techniques such as selective 

encryption, packing, robust aggregation methods, and 

strong governance. 
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